RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика» // Архив

Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 2023, том 15, выпуск 1, страницы 16–25 (Mi vyurm543)

Математика

Алгоритмы вычисления собственных значений дискретных полуограниченных операторов, заданных на квантовых графах

С. И. Кадченкоa, А. В. Ставцеваb, Л. С. Рязановаa, В. В. Дубровскийa

a Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Росийская Федерация
b ЗАО «Урал–Омега», г. Магнитогорск, Российская Федерация

Аннотация: Спектральные задачи для дифференциальных операторов, заданных на квантовых графах, представляют большой научный интерес. Это связано с необходимостью решения таких задач в квантовой механике, моделировании компьютерных сетей, обработке изображений, алгоритмах ранжирования, моделировании электрических, механических, акустических процессов, в сетях разнообразной природы, конструировании наносистем с заданными свойствами и других областях науки и техники. На сегодня разработана теоретическая часть решения прямых и обратных спектральных задач на квантовых графах. Но вычислительные алгоритмы, построенные на этих методах, вычислительно малоэффективны. Мы не встречали опубликованных работ, в которых были бы рассмотрены примеры численного решения спектральных задач на конечных связанных графах с большим количеством вершин и ребер. Поэтому разработка новых вычислительно эффективных алгоритмов численного решения спектральных задач, заданных на конечных связанных графах, является актуальной.
Разработана методика нахождения собственных значений краевых задач, заданных на конечных связанных графах, с необходимым количеством вершин и ребер. Для использования этой методики надо знать собственные значения и вектор собственных функций соответствующих невозмущенных вектор-операторов, которые, как правило, самосопряженные. Находить их вручную, в случае большого количества у графа вершин и ребер, достаточно сложно. Это привело к необходимости написать пакет программ в математической среде MAPLE, позволяющий в символьном режиме находить трансцендентные уравнения для вычисления собственных значений и нахождения собственных функций не возмущенных краевых задач. Приведены примеры вычисления собственных значений для квантового графа, моделирующего молекулу ароматического соединения антрацена.

Ключевые слова: асимптотические формулы, собственные значения и собственные функции, дискретные и самосопряженные операторы, обратные спектральные задачи, метод Галеркина.

УДК: 517.642.8

Поступила в редакцию: 20.10.2022

DOI: 10.14529/mmph230102



© МИАН, 2024