Аннотация:
Для начально-граничной задачи динамики термовязкоупругой среды типа Олдройда в плоском случае установлена локальная теорема существования сильного решения. Изучаемая сплошная среда является ограниченной областью на плоскости с достаточно гладкой границей. Рассматриваемая система уравнений является обобщением системы Навье–Стокса–Фурье и получается из нее путем добавления в тензор напряжений интегрального слагаемого, отвечающего за память среды. Вначале рассматривается начально-граничная задача для системы вязкоупругости типа Олдройда с переменной вязкостью. Затем рассматривается начально-граничная задача для уравнения сохранения энергии с переменным коэффициентом теплопроводности и интегральной частью. Разрешимость этих задач устанавливается путем сведения к операторным уравнениям, для разрешимости которых применяется принцип сжимающих отображений. Для разрешимости исходной системы термовязкоупругости устраивается итерационный процесс, заключающийся в последовательном решении вспомогательных задач. Подходящие априорные оценки дают сходимость последовательных приближений на достаточно малом временном промежутке. Докозательство существенным образом опирается на результаты L. Consiglieri о разрешимости соответствующей системы Навье–Стокса–Фурье.
Ключевые слова:уравнение Навье–Стокса–Фурье; модель Олдройда; термовязкупругость; сильное решение; неподвижная точка.