Аннотация:
Неклассическими называют те модели математической физики, чьи представления в виде уравнений или систем уравнений в частных производных не укладываются в рамках одного из классических типов — эллиптического, параболического или гиперболического. Статья содержит обзор результатов автора в области неклассических моделей математической физики, для которых рассмотрены начально-конечные задачи, обобщающие условия Коши и Шоуолтера–Сидорова. Абстрактные результаты проиллюстрированы конкретными начально-конечными задачами для уравнений и систем уравнений в частных производных, возникающих в последнее время в приложениях, а именно, в теории фильтрации, гидродинамике и мезоскопической теории, и рассмотренных на множествах различной геометрической структуры.
Ключевые слова:неклассические модели математической физики, модель Плотникова, система Навье–Стокса, уравнение Баренблатта–Желтова–Кочиной, (многоточечные) начально-конечные задачи, относительный спектр.