Аннотация:
В системе компьютерной математики Maple создан пакет MinimalRealization для решения задачи минимальной реализации линейной конечномерной стационарной динамической системы с дискретным временем. Пакет позволяет построить минимальную реализацию системы по конечной последовательности марковских параметров системы, либо по передаточной матрице-функции системы, либо по произвольной не минимальной реализации. Он оформлен в виде пользовательской библиотеки и состоит из 11 процедур: ApproxEssPoly, ApproxNullSpace, Approxrank, ExactEssPoly, FractionalFactorizationG, FractionalFactorizationMP, MarkovParameters, MinimalityTest, MinimalRealizationG, MinimalRealizationMP, Realization2MinimalRealization. Алгоритм реализации основан на последовательном решении трех задач: 1) нахождение индексов и существенных многочленов последовательности марковских параметров (процедуры ExactEssPoly, ApproxEssPoly), 2) построение правой дробной факторизации передаточной матрицы-функции (FractionalFactorizationG, FractionalFactorizationMP), 3) построение минимальной реализации по заданной дробной факторизации (MinimalRealizationG, MinimalRealizationMP, Realization2MinimalRealization). Предусмотрена возможность решения задачи как в условиях точных вычислений (в рациональной арифметике), так и при наличии ошибок округления или для начальных данных, возмущенных шумом. В последнем случае задача является неустойчивой, поскольку требует нахождения ранга и ядра матрицы. Используется сингулярное разложение матриц как наиболее надежный метод нахождения численного ранга (Approxrank) и ядра (ApproxNullSpace). Вычислительные эксперименты с пакетом MinimalRealization показали хорошее соответствие между точными и приближенными решениями задачи.
Ключевые слова:дискретная линейная конечномерная стационарная динамическая система; дробная факторизация; минимальная реализация; алгоритмы решения задачи реализации.