Аннотация:
В данной статье исследуется начально-краевая задача Коши с однородными граничными условиями Дирихле для обобщенного уравнения Хоффа, заданного в ограниченной области. Это уравнение моделирует динамику выпучивания двутавровой балки, находящейся под постоянной нагрузкой и относится к классу полулинейных (у оператора действующего на исходную функцию можно выделить линейную часть и нелинейную) уравнений соболевского типа. Нас интересует устойчивость нулевого решения данной задачи. В рамках теории устойчивости выделяют два метода: первый — исследование устойчивости по линейному приближению и второй — исследование устойчивости посредством функции Ляпунова. Отметим, что первым методом Ляпунова исследовать устойчивость решения уравнения Хоффа, заданного в области, не удается, поскольку в нашем случае относительный спектр оператора M пересекается с мнимой осью. Поэтому для нашей задачи был применен метод функций Ляпунова, модифицированный для случая неполных нормированных пространств. В результате получена теорема об устойчивости и асимптотической устойчивости нулевого решения данной задачи.
Ключевые слова:уравнение соболевского типа; фазовое пространство; устойчивость по Ляпунову.