Аннотация:
Работа посвящена рассмотрению обратных задач для некоторых математических моделей, возникающих в теории фильтрации. Мы рассматриваем обратную задачу об определении неизвестной правой части и коэффициентов в псевдопараболическом уравнении третьего порядка. Уравнения такого типа и более общие уравнения Соболевского типа возникают в теории фильтрации, при описании процессов тепло и массопереноса, физике плазмы и во многих других областях. Задача сводится к некоторому операторному уравнению, разрешимость которого устанавливается при помощи априорных оценок и теоремы о неподвижной точке. Кроме естественных условий гладкости данных, мы требуем также выполнения некоторого условия корректности, которое по существу сводится к условию невырожденности некоторой матрицы, построенной по данным задачи. Формулируются и доказываются теоремы о существовании и единственности решения поставленной задачи. Приводится оценка устойчивости. В линейном случае результат является глобальным по времени, а в нелинейном локальным по времени. В качестве основных пространств рассматриваются пространства С. Л. Соболева.
Ключевые слова:уравнение псевдопараболического типа; теорема существования и единственности решения; обратная задача; краевая задача.