Аннотация:
Рассматривается модель стационарных колебаний тонкой плоской пластины, у которой одна сторона заделана, противоположная сторона свободна, а по боковым сторонам — свободное опирание. При математическом моделировании возникает локальная краевая задача для бигармонического уравнения в прямоугольной области. Краевые условия задаются на всей границе области. Показано, что рассматриваемая задача оказывается самосопряженной, и при этом некорректной. Показано, что нарушается устойчивость решения задачи. Найдены необходимые и достаточные условия существования решения исследуемой задачи. Построены пространства корректности рассматриваемой задачи.