Аннотация:
В работе исследуется метод Петрова–Галеркина для задачи Коши для дифференциально-операторного уравнения с монотонным оператором в сепарабельном гильбертовом пространстве. Доказано существование и единственность сильного решения исследуемой задачи. Получены новые асимптотические оценки скорости сходимости построенных приближенных решений к точному решению в равномерной топологии. На операторы уравнения накладываются минимальные требования, необходимые для сходимости построенных приближенных решений. Отсутствуют какие-либо предположения о структуре операторов. Таким образом, метод исследуемый в данной работе, может быть применен к широкому классу параболических уравнений, а также, интегро-дифференциальных уравнений. В качестве приложения, исследуемый в работе метод, применяется к модельному параболическому уравнению четвертого порядка по пространственным переменным.
Ключевые слова:задача Коши; дифференциально-операторное уравнение; метод Петрова–Галеркина; оператор ортогонального проектирования; скорость сходимости.