RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование» // Архив

Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2017, том 10, выпуск 1, страницы 125–137 (Mi vyuru362)

Программирование

Стационарные точки уравнения «реакция-диффузия» и переходы в стабильные состояния

А. С. Коротких

Воронежский государственный университет (г. Воронеж, Российская Федерация)

Аннотация: Рассмотрена бесконечномерная динамическая система, заданная уравнением «реакция-диффузия» с кубической нелинейностью при краевом условии Неймана и фиксированном значении средней величины. Изложена методика приближенного вычисления бифурцирующих решений при малых и конечных значениях закритического приращения параметра. Предложена также методика «трассировки» траекторий спуска из произвольного состояния (с произвольной концентрацией) в стабильное состояние (с концентрацией, реализующей минимум функционала энергии). Методика основана на вычислении сужения функционала энергии на линейную оболочку основных собственных функций (мод) оператора Лапласа и приближенном построении трассы спуска в виде последовательности точек, сопровождающих траекторию динамической системы. В случае малого закритического приращения бифуркационного параметра вычислены асимптотические представления бифурцирующих решений. В случае конечного закритического приращения бифуркационного параметра приведены примеры вычисления трассы спуска в точки минимума функционала энергии.

Ключевые слова: уравнение «реакция-диффузия»; гладкий функционал; экстремаль; бифуркация стационарных состояний; моды бифуркации; вариационный метод Ляпунова–Шмидта; траектории спуска в точки минимума.

УДК: 517.9

MSC: 90C30, 90C90

Поступила в редакцию: 20.09.2016

DOI: 10.14529/mmp170108



Реферативные базы данных:


© МИАН, 2024