Аннотация:
Рассмотрена бесконечномерная динамическая система, заданная уравнением «реакция-диффузия» с кубической нелинейностью при краевом условии Неймана и фиксированном значении средней величины. Изложена методика приближенного вычисления бифурцирующих решений при малых и конечных значениях закритического приращения параметра. Предложена также методика «трассировки» траекторий спуска из произвольного состояния (с произвольной концентрацией) в стабильное состояние (с концентрацией, реализующей минимум функционала энергии). Методика основана на вычислении сужения функционала энергии на линейную оболочку основных собственных функций (мод) оператора Лапласа и приближенном построении трассы спуска в виде последовательности точек, сопровождающих траекторию динамической системы. В случае малого закритического приращения бифуркационного параметра вычислены асимптотические представления бифурцирующих решений. В случае конечного закритического приращения бифуркационного параметра приведены примеры вычисления трассы спуска в точки минимума функционала энергии.
Ключевые слова:уравнение «реакция-диффузия»; гладкий функционал; экстремаль; бифуркация стационарных состояний; моды бифуркации; вариационный метод Ляпунова–Шмидта; траектории спуска в точки минимума.