Аннотация:
Исследуется первая начально-краевая задача для системы уравнений, моделирующей движение несжимаемой вязкоупругой жидкости Кельвина–Фойгта в магнитном поле Земли с учетом внешнего воздействию на жидкости. Задача изучается в предположении, что жидкость находится под влиянием различных внешних воздействий, зависящих не только от координаты точки в пространстве, но и от времени. В рамках теории полулинейных неавтономных уравнений соболевского типа доказана теорема о существовании и единственности решения, которое является квазистационарной полутраекторией, а также дано описание расширенного фазового пространства. Приведены результаты вычислительного эксперимента.