Аннотация:
Статья посвящена изучению некоторых математических моделей, описывающих процессы теплопереноса. Мы рассматриваем обратную задачу о восстановлении управляющего параметра, который обеспечивает заданное температурное распределение в данной точке пространственной области. Данный параметр — есть младший коэффициент в параболическом уравнении, зависящий от времени. Эта нелинейная задача сводится к операторному уравнения, разрешимость которого устанавливается при помощи априорных оценок и теоремы о неподвижной точке. Сформулированы и доказаны теоремы существования и единственности решений этой задачи. Установлены оценки устойчивости. Главный результат — глобальная по времени теорема существования решений при некоторых естественных условиях на данные задачи. Доказательство опирается на принцип максимума. Используемые функциональные пространства — пространства Соболева.