RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование» // Архив

Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2017, том 10, выпуск 3, страницы 156–162 (Mi vyuru395)

Эта публикация цитируется в 1 статье

Краткие сообщения

Spectral problems on compact graphs

[Решение спектральных задач на компактных графах]

S. I. Kadchenkoab, S. N. Kakushkinb, G. A. Zakirovaa

a South Ural State University, Chelyabinsk, Russian Federation
b Nosov Magnitogorsk State Technical University, Magnitogorsk, Russian Federation

Аннотация: Разработана методика нахождения собственных чисел и собственных функций абстрактных дискретных полуограниченных операторов, заданных на компактных графах. Получены линейные формулы, позволяющие с высокой вычислительной эффективностью вычислять собственные значения этих операторов, начиная с любого их номера, независимо от того, известны ли собственные значения с предыдущими номерами. Данные формулы решают проблему вычисления всех необходимых точек спектра дискретных полуограниченных операторов, заданных на геометрических графах. Собственные функции находятся на основе метода Галеркина. Рассмотрен вопрос выбора базисных функций, лежащих в основе построения решения спектральных задач, порожденных дискретными полуограниченными операторами, и приводится алгоритм их построения. Проведен вычислительный эксперимент по нахождению собственных чисел и собственных функций оператора Штурма–Лиувилля, заданного на двухреберном компактном графе со стандартными условиями склейки. Результаты вычислительных экспериментов показали высокую эффективность разработанной методики.

Ключевые слова: возмущенные операторы; собственные числа; собственные функции; компактный граф; условия непрерывности; условия Кирхгофа.

УДК: 519.624.3

MSC: 47A10

Поступила в редакцию: 21.04.2017

Язык публикации: английский

DOI: 10.14529/mmp170314



Реферативные базы данных:


© МИАН, 2024