Аннотация:
В работе предложена математическая модель для описания широкого класса эредитарных осцилляторов или осцилляторов с памятью. В качестве базового уравнения в такой модели выступает интегро-дифференциальное уравнения вольтеровского типа с разностными ядрами — функциями памяти, которые были выбраны степенными функциями. Этот выбор, с одной стороны, обусловлен широкими приложениями степенных законов и фрактальными свойствами процессов в природе, а с другой, дает возможность применить математический аппарат дробного исчисления. Далее, в работе модельное интегро-дифференциальное уравнение было записано в терминах производных дробных порядков Герасимова–Капуто. Используя аппроксимации операторов дробных порядков, была составлена нелокальная явная конечно-разностная схема, которая дает численное решение предложенной модели. С помощью лемм и теорем сформулированы условия устойчивости и сходимости полученной схемы. Приведены примеры работы численного алгоритма для некоторых эредитарных осцилляторов, построены их осциллограммы и фазовые траектории.