RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование» // Архив

Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2018, том 11, выпуск 2, страницы 139–146 (Mi vyuru437)

Эта публикация цитируется в 1 статье

Краткие сообщения

The rate of convergence of hypersingular equations numerical computation

[Скорость сходимости численных методов решения гиперсингулярных уравнений]

S. I. Eminov, S. Yu. Petrova

Novgorod State University Yaroslav the Wise, Veliky Novgorod, Russian Federation

Аннотация: Развиты численные методы решения гиперсингулярных уравнений на основе полиномов Чебышева второго рода с весом, учитывающим физические условия Мейкснера на ребре. Используя аналитический вид матрицы интегрального оператора с логарифмической особенностью, получены оценки скорости сходимости. Рассмотрена модель дельта функции, показана ее неприменимость в задачах дифракции и вибраторных антенн. Ранее был предложен численно-аналитический метод решения задач возбуждения вибраторных антенн. В настоящей работе впервые дано обоснование численно-аналитического метода. В отличие от метода редукции, численно-аналитический метод демонстрирует надежную сходимость, как в задачах дифракции, так и в задачах возбуждения антенн. Особенность задач возбуждения заключается в том, что правая часть гиперсингулярного уравнения локализована в небольшой, по сравнению с характерными размерами антенны области. Математически это означает, что правая часть гиперсингулярного уравнения разлагается в медленно-сходящийся ряд. Подобным свойством также обладает и решение уравнения. Именно поэтому метод редукции недостаточно эффективен. Рассмотрен пример численного решения. Показана применимость развитых методов для исследования широкого круга задач дифракции.

Ключевые слова: гиперсингулярный интеграл; полином Чебышева; скорость сходимости; матрица оператора; метод редукции; аналитический; второго рода.

УДК: 519.837

MSC: 41A50

Поступила в редакцию: 12.03.2018

Язык публикации: английский

DOI: 10.14529/mmp180211



Реферативные базы данных:


© МИАН, 2024