RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование» // Архив

Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2018, том 11, выпуск 4, страницы 5–30 (Mi vyuru453)

Эта публикация цитируется в 5 статьях

Обзорные статьи

О современных ортогонализованных алгоритмах оптимальной дискретной фильтрации

Ю. В. Цыгановаa, М. В. Куликоваb

a Ульяновский государственный университет, г. Ульяновск, Российская Федерация
b Университет Лиссабона, г. Лиссабон, Португалия

Аннотация: В настоящее время вычислительные методы оптимального оценивания стали самостоятельной областью исследования и получили большое развитие. Современные численно эффективные ортогонализованные алгоритмы привлекательны не только своей устойчивостью к ошибкам машинного округления, но и приспособленностью алгоритмов, использующих различные типы матричных ортогональных преобразований, к программной реализации на параллельных или векторных вычислительных системах. Эти свойства позволяют разрабатывать новые эффективные информационные технологии, в частности, при решении задач в режиме реального времени и при обработке больших данных. Статья содержит краткий обзор современных ортогонализованных алгоритмов оптимальной линейной дискретной фильтрации. Рассмотрены четыре класса ортогонализованных алгоритмов: квадратно-корневые ортогонализованные алгоритмы, алгоритмы на основе методов взвешенной ортогонализации, $J$-ортогонализованные алгоритмы и алгоритмы на базе методов сингулярного разложения. Приведена классификация алгоритмов по типам матричных ортогональных преобразований, на основе которых эти алгоритмы построены. Такая классификация позволяет легче понять метод построения ортогонализованного фильтра и выбрать способ эффективной программной реализации при решении практических задач в классе многомерных дискретных линейных стохастических систем. В работе исследованы вычислительные аспекты ортогонализованных алгоритмов: численная устойчивость к ошибкам машинного округления и способы эффективной программной реализации. Все рассмотренные алгоритмы являются алгебраически эквивалентными стандартной реализации дискретного фильтра Калмана, но существенно превосходят его по своим вычислительным свойствам. Полученные результаты сравнительного исследования позволяют сделать вывод о том, что применение ортогонализованных алгоритмов при решении практических задач помогает получить численно эффективные и надежные решения.

Ключевые слова: дискретная фильтрация, линейные стохастические системы, фильтр Калмана, матричные ортогональные преобразования, ортогонализованные алгоритмы.

УДК: 519.61+519.711:681.5

MSC: 93A30, 93E10

Поступила в редакцию: 17.08.2018

DOI: 10.14529/mmp180401



Реферативные базы данных:


© МИАН, 2024