Аннотация:
В работе предложен алгоритм факторизации Винера–Хопфа скалярных многочленов. Алгоритм, основанный на понятиях индексов и существенных многочленов, позволяет найти факторизационные множители многочлена с гарантированной точностью. Метод использует вычисления с конечными теплицевыми матрицами и дает возможность получить коэффициенты обоих факторизационных факторов одновременно. Рассмотрены вычислительные аспекты алгоритма. Найдена априорная оценка числа обусловленности используемой теплицевой матрицы. Получены формулы для вычисления лорановских коэффициентов с заданной точностью для функций аналитических и не обращающихся в нуль в кольцевой окрестности единичной окружности. Изучена устойчивость факторизационных множителей. Установлены верхние границы точности вычисления факторизационных множителей. Все оценки являются эффективными. Предложенный алгоритм был реализован в компьютерной системе Maple в виде модуля «PolynomialFactorization». Численные эксперименты с модулем показали хорошее согласие с теоретическим исследованием.