Аннотация:
Рассматриваются обратные задачи восстановления коэффициентов линейного псевдопараболического уравнения, возникающие в теории фильтрации. Граничные условия типа Неймана дополняются условиями переопределения, которые есть значения решения в некотором наборе внутренних точек области. Мы приводим теоремы существования и единственности решений в пространствах Соболева. Полученное решение является регулярным, то есть обладает всеми обобщенными производными, входящими в уравнение, принадлежащими некоторому пространству Лебега. Метод доказательства является конструктивным. Задача сводится к нелинейному операторному уравнению с сжимающим оператором, если временной промежуток достаточно мал. Используя метод доказательства, мы строим численный алгоритм определения решения, соответствующий программный комплекс и описываем результаты численных экспериментов в двухмерном случае по пространственным переменным. Определению подлежат само решение уравнения и коэффициент пьезопроводимости трещиноватой среды. Основной метод для численного определения решения – метод конечных элементов, который дополняется разностной схемой для решения соответствующей системы обыкновенных дифференциальных уравнений. В конечном счете задача сводится к решению нелинейной алгебраической системы, решение которой находится при помощи итерационной процедуры. Результаты показывают очень хорошую сходимость численного алгоритма.