RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование» // Архив

Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2019, том 12, выпуск 1, страницы 96–109 (Mi vyuru474)

Эта публикация цитируется в 2 статьях

Программирование

Численное моделирование конвективного тепломассопереноса в сферических координатах

А. В. Боковa, М. А. Корытоваb, А. Б. Самаровb

a Российский экономический университет имени Г.В. Плеханова, г. Пятигорск, Российская Федерация
b Южно-Уральский государственный университет, г. Челябинск, Российская Федерация

Аннотация: Целью исследования является построение дискретного аналога обобщенного дифференциального уравнения, описывающего конвекцию в вязкой несжимаемой жидкости в сферических координатах. Математическая модель конвективного тепломассопереноса в вязкой несжимаемой жидкости задается системой дифференциальных уравнений, полученных на основе уравнений гидродинамики, тепло- и массообмена. Эти уравнения подчиняются обобщенному закону сохранения, который описывается дифференциальным уравнением для обобщенной переменной. Для дискретизации дифференциального уравнения используется метод контрольного объема. Расчетная область разбивается на множество непересекающихся контрольных объемов с узловой точкой в каждом из них. Дифференциальное уравнение интегрируется по контрольным объемам. В результате получается дискретный аналог, связывающий значение обобщенной переменной в узловой точке с ее значениями в соседних узлах. Метод гарантирует строгое выполнение законов сохранения как во всей расчетной области, так и в любой ее части. Чтобы применять лучшие аппроксимации профилей обобщенной переменной, находятся точные решения уравнений сохранения отдельно по каждой координате. Кратко поясняется физический смысл точных решений. В итоге строится дискретный аналог для обобщенного дифференциального уравнения с использованием полученных аналитических решений.

Ключевые слова: математическая модель, конвекция, обобщенное дифференциальное уравнение, дискретный аналог, контрольный объем.

УДК: 517.958+517.988.68

MSC: 80A20

Поступила в редакцию: 31.08.2018

DOI: 10.14529/mmp190108



Реферативные базы данных:


© МИАН, 2024