RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование» // Архив

Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2019, том 12, выпуск 4, страницы 29–40 (Mi vyuru515)

Математическое моделирование

Cooperation in a conflict of $n$ persons under uncertainty

[Кооперация в конфликте $n$ лиц при неопределенности]

V. I. Zhukovskiya, K. N. Kudryavtsevbc, S. A. Shunailovab, I. S. Stabulitb

a Lomonosov Moscow State University, Moscow, Russian Federation
b South Ural State University, Chelyabinsk, Russian Federation
c Chelyabinsk State University, Chelyabinsk, Russian Federation

Аннотация: В работе рассматривается модель конфликтной системы с $N$ активными участниками, имеющими собственные интересы, и при воздействии неопределенного фактора. При этом лица, принимающие решения, не имеют никакой статистической информации о возможной реализации неопределенного фактора, им известно лишь множество возможных реализаций этого фактора – неопределенностей. С учетом предположения о том, что в процессе принятия решения стороны конфликта могут согласовывать свои действия, модель формализуется как кооперативная игра $N$ лиц без побочных платежей и при неопределенности. В статье вводится новый для теории игр принцип коалиционной равновесности. Интеграция индивидуальной и коллективной рациональности (из теории кооперативных игр без побочных платежей) и этого принципа позволяет формализовать соответствующую концепцию коалиционного равновесия (CE) для модели конфликта $ N $ лиц в условиях неопределенности. При этом учет неопределенности проводится с помощью концепции «аналога максимина», предложенного ранее в работах авторов, и построенных на его основе «сильных гарантий». Далее в работе устанавливаются достаточные условия существования коалиционного равновесия, которые сводятся к построению седловой точки для свертки Гермейера гарантированных выигрышей. Следуя подходу Э. Бореля, Дж. Фон Нейман и Дж. Нэша, доказывается существование коалиционного равновесия в классе смешанных стратегий при стандартных предположениях математической теории игр (компактность множества неопределенностей, компактность множества стратегий и непрерывность функций выигрыша). В конце статьи рассматриваются некоторые возможные направления для дальнейших исследований.

Ключевые слова: кооперативная игра, неопределенность, свертка Гермейера, игра гарантий.

УДК: 519.816+519.83

MSC: 91A06, 68T37

Поступила в редакцию: 07.10.2019

Язык публикации: английский

DOI: 10.14529/mmp190402



Реферативные базы данных:


© МИАН, 2024