Аннотация:
Предложен эффективный вычислительный алгоритм для решения краевых задач оптимального быстродействия и оптимальной точности при минимаксной оценке отклонения результирующей траектории от заданного конечного состояния. Задача сводится к невыпуклой задаче нелинейного программирования. Предложенный алгоритм учитывает невыпуклый характер поставленной задачи нелинейного программирования, обеспечивает поиск в зоне «оврагов» и достаточно эффективно выполняет поиск в условиях повышенной размерности области определения оптимизируемого функционала, обеспечивая требуемую точность решения. За счет преобразования многомерной невыпуклой задачи нелинейного программирования к задаче минимизации гладкой монотонно убывающей функции одного переменного алгоритм существенно снижает вычислительную сложность решения краевых задач оптимального быстродействия и оптимальной точности при минимаксной оценке отклонения результирующей траектории от заданного конечного состояния. Приведен пример решения тестовой задачи оптимального управления индукционным нагревом цилиндра.