RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование» // Архив

Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2012, выпуск 12, страницы 5–12 (Mi vyuru52)

Эта публикация цитируется в 1 статье

Математическое моделирование

Исследование устойчивости параллельного алгоритма решения задачи сильной отделимости на базе фейеровских отображений

А. В. Ершова, И. М. Соколинская

Южно-Уральский государственный университет (г. Челябинск, Российская Федерация)

Аннотация: В теории распознавания образов важное значение имеет задача сильной отделимости, заключающаяся в разделении двух выпуклых непересекающихся многогранников слоем наибольшей толщины. В работе рассматриваются нестационарные задачи сильной отделимости, то есть задачи, исходные данные которых меняются в ходе вычислительного процесса. Алгоритмы решения таких задач должны обладать двумя свойствами: автокорректируемостью и устойчивостью. Автокорректируемость подразумевает, что алгоритм может эффективно продолжать свою работу после единичного изменения входных данных. Устойчивость означает, что малое изменение входных данных приводит к малому изменению результата. Свойством автокорректируемости обладают итерационные алгоритмы, использующие фейеровские процессы. В статье описывается параллельный алгоритм решения задачи сильной отделимости на базе фейеровских отображений, допускающий эффективную реализацию на многопроцессорных системах с массовым параллелизмом. Вводится понятие устойчиво фейеровского отображения. Доказывается теорема, определяющая условия, при которых фейеровское отображение будет устойчиво фейеровским.

Ключевые слова: Фейеровское отображение, задача сильной отделимости, итерационный метод, псевдопроекция точки, устойчиво фейеровское отображение.

УДК: 519.6

MSC: 68T10

Поступила в редакцию: 07.02.2012



© МИАН, 2024