Аннотация:
В работе исследуется возможность эффективной реализации вычислений в малобитных нейросетевых моделях на платформе с VLIW архитектурой Эльбрус. Такие модели широко применяются на практике для повышения вычислительной эффективности распознавания и хорошо подходят для вычислителей таких архитектур, как x86 и ARM. В данной работе была рассмотрена 8-битная нейросетевых модель, в которой наиболее ресурсоемкой частью реализации является матричное умножение. В данной работе приведена эффективная реализация матричного умножения, учитывающая особенности архитектуры Эльбрус: наличие нескольких вычислительных каналов с различными арифметико-логическими устройствами, буфера предварительной подкачки массивов и собственного SIMD-расширения. Проведено теоретическое и экспериментальное сравнение вычислительной производительности малобитной и классической нейросетевых моделей, показавшее, что процессоры Эльбрус имеют гораздо больше возможностей для выполнения оптимальных вещественных вычислений и требуют разработки новых подходов к повышению вычислительной эффективности нейросетевых моделей.
Ключевые слова:малобитные нейронные сети, вычислительная эффективность, архитектура Эльбрус, матричные операции.