Аннотация:
В настоящее время методы слепого разделения сигналов используются в различных областях деятельности человека, в том числе в системах беспроводной связи, радиолокации и пеленгации. В статье представлены оригинальный метод и математическая модель слепого разделения двух вещественных радиосигналов. Слепое разделение сигналов подразумевает, что никакой информации о радиосигнале, кроме принимаемых отсчетов, нет. Решение поставленной задачи основано на двух фундаментальных предположениях, выполняемых в реальных условиях. Первое предположение состоит в том, что наблюдаемый сигнал линейно зависит от сигнала источников. Второе предположение заключается в том, что источники радиосигналов являются статистически независимыми. Общую структуру методов слепого разделения сигналов можно представить в виде комбинации контрастной функции и метода ее оптимизации. В ранее известных способах решение этой задачи слепого разделения сигналов осуществляется итерационными методами. В качестве критерия разделения радиосигналов выбрано приведение кумулянтов второго и четвертого порядков выходных сигналов к нулю. Предложенное аналитическое решение позволяет находить размешивающую матрицу $W$ для любых независимых сигналов $s_1$ и $s_2$, кроме тех, у которых кумулянты четвертого порядка равны нулю. Для таких величин разработанный метод позволяет только привести их смесь к двум некоррелированным сигналам. В отличие от существующих итерационных методов, предложенный метод слепого разделения сигналов обеспечивает гарантированную сходимость задачи в заданных ограничениях. Для проверки работоспособности метода создана модель смешивания и разделения сигналов, эффективность которой оценена при различных мощностях собственных шумов в каналах приема. В результате моделирования построена зависимость уровня разделения сигналов от мощности собственных шумов. Продемонстрирована работоспособность метода при отношении шумов входных сигналов к мощности полезных сигналов менее 0,2 дБ.