Аннотация:
Общепринято применение проективной нормализации (частный случай ортокоррекции и коррекции перспективы) к фотографиям документов для их последующего оптического распознавания. При этом неточности нормализации могут приводить к ошибкам распознавания. На сегодняшний день в литературе предложен ряд критериев точности нормализации, однако их соответствие качеству распознавания не исследуется. В данной работе для случая документа фиксированной структуры обосновывается равномерная вероятностная модель ошибок распознавания, в соответствии с которой вероятность верного распознавания символа скачком падает до нуля с ростом невязки координат этого символа. Для этой модели доказано, что критерий точности нормализации изображения, равный максимальной по текстовым полям документа невязке координат, монотонно связан с вероятностью верного распознавания всего документа. Показано, что задача вычисления максимальной невязки координат не сводится к ближайшей известной, т.е. задаче дробно-линейного программирования. Наконец, впервые получено аналитическое решение задачи вычисления максимальной невязки координат на объединении многоугольников.