Аннотация:
В работе представлена поведенческая модель мемристора, в котором динамика тока описывается дифференциальным уравнением Бернулли. Поведенческая модель построена в виде двумерного полинома расщепленных сигналов для передаточной характеристики мемристора Бернулли при гармоническом входном сигнале. Расщепление входных сигналов обеспечивает однозначность соответствия вход-выход, адаптацию модели к заданному классу воздействий и, следовательно, ее простоту по сравнению с универсальными нелинейными моделями, например, рядом Вольтерры и нейронными сетями. Расщепление гармонического воздействия выполнено с помощью линии задержки. Показано, что векторный сигнал, содержащий воздействие и результат его задержки во времени на один шаг, обладает минимально возможной длиной согласно условиям расщепления. Двумерный полином третьей степени, построенный на элементах векторного сигнала, обеспечивает высокую точность моделирования передаточной характеристики мемристора Бернулли в среднеквадратичной метрике.