Аннотация:
Даны оценки классического интеграла Помпею, рассматриваемого на всей комплексной плоскости с особыми точками $z=0$ и $z=\infty$, в семействах различных весовых пространств. Этот интеграл играет ключевую роль в теории обобщенных аналитических функций И.Н. Векуа, которая широко используется при моделировании различных процессов – трансзвуковых течений газа, состояний безмоментного напряженного равновесия выпуклых оболочек и многих других. Более точно, описываются весовые порядки $\lambda$, для которых этот оператор ограничен из весового пространстве $L^p_\lambda$ функций, суммируемых с $p$-ой степенью, в весовое пространство $C^\mu_{\lambda+1}$ гельдеровых функций. Аналогичные оценки получены также для более общих интегралов с разностным ядром. Указаны приложения этих результатов к эллиптическим системам первого порядка на плоскости, которые, в частности, включают математические модели плоской теории упругости (система Ламе) в общем анизотропном случае и играют центральную роль в теории обобщенных аналитических функций И.Н. Векуа.
Ключевые слова:интеграл Помпею, весовые пространства Гельдера и Лебега, обобщенные интегралы Помпею, интегралы с разностными ядрами, математические модели теории упругости.