Аннотация:
В статье предлагается использование цифрового одномерного фильтра Калмана в реализации численных алгоритмов решения задачи оптимальных динамических измерений для восстановления динамически искаженного сигнала при наличии помех. Математическая модель сложного измерительного устройства построена как система леонтьевского типа, начальное состояние которой отражает условие Шоуолтера – Сидорова. Основным положением теории оптимальных динамических измерений является моделирование искомого входящего сигнала как решение задачи оптимального управления с минимизацией функционал штрафа, в котором оценивается расхождение моделируемого и наблюдаемого выходящего (или наблюдаемого) сигнала. Наличие помех на выходе измерительного устройства приводит к необходимости использования в численных алгоритмах цифровых фильтров. Сглаживающие фильтры, применяющиеся при неизвестных вероятностных параметрах помех, недостаточно эффективны при фильтрации пикообразных сигналов на малом временном промежутке. Кроме того, динамика измерений актуализирует рассмотрение фильтров, реагирующих на быстро меняющиеся данные. В статье предлагается включение процедуры фильтрации наблюдаемого сигнала в ранее разработанные численные алгоритмы, что позволяет либо расширить их применение, либо упростить функционал штрафа.
Ключевые слова:оптимальное динамическое измерение, фильтр Калмана, алгоритм численного решения, система леонтьевского типа.