Аннотация:
В статье представлен комплекс основных результатов, полученных в последние годы в аналитических и численных исследованиях различных задач для систем леонтьевского типа – конечномерного аналога уравнений соболевского типа. Ключевым фактором в достижении определенных успехов стало наличие прикладных задач, изучение каждой из которых представляло самостоятельный интерес. В статье будут представлены три математические модели, в основе которых лежит система леонтьевского типа: вырожденная балансовая динамическая модель производственного предприятия, вырожденная балансовая модель клеточного цикла, математическая модель сложного измерительного устройства. В рамках класса задач будут рассмотрены начальная задача Шоуолтера – Сидорова для системы леонтьевского типа и ряд задач оптимального управления для нее. Кратко будут изложены численные методы решения таких задач, показаны результаты о сходимости приближенных решений к точному. Особое внимание будет уделено задаче восстановления динамически искаженного входного сигнала по наблюдаемому выходному при наличии помех. Математическая модель сложного измерительного устройства построена как система леонтьевского типа, начальное состояние которой отражает условие Шоуолтера – Сидорова. Основным положением теории оптимальных динамических измерений является моделирование искомого входящего сигнала как решения задачи оптимального управления с минимизацией функционала штрафа, в котором оценивается расхождение моделируемого и наблюдаемого выходного (или наблюдаемого) сигналов. Наличие помех на выходе измерительного устройства приводит к необходимости использования в численных алгоритмах цифровых фильтров. Статья носит обзорный характер и дает целостное понимание направлений развития исследований систем леонтьевского типа.