RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование» // Архив

Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2022, том 15, выпуск 1, страницы 60–83 (Mi vyuru629)

Эта публикация цитируется в 2 статьях

Обзорные статьи

Неклассические модели математической физики с многоточечным начально-конечным условием

С. А. Загребина, А. С. Конкина

Южно-Уральский государственный университет, г. Челябинск, Российская Федерация

Аннотация: Статья содержит обзор результатов авторов в области неклассических моделей математической физики, для которых рассмотрены многоточечные начально-конечные условия, обобщающие условия Коши и Шоуолтера – Сидорова. Напомним, что неклассическими называют те модели математической физики, чьи представления в виде уравнений или систем уравнений в частных производных не укладываются в рамках одного из классических типов – эллиптического, параболического или гиперболического.
Абстрактные результаты проиллюстрированы конкретными многоточечными начально-конечными задачами в различных постановках для уравнений в частных производных, возникающих в последнее время в приложениях. В том числе рассмотрены неавтономная модель Чена – Гетина с комплексными коэффициентами, стохастическая эволюционная модель Девиса, макромодель транспортного потока на перекрестке, основанная на уравнениях Осколкова, рассмотренных в системе геометрических графов, учитывающих условие непрерывности, баланса потока и условие запрета на движение.

Ключевые слова: уравнения соболевского типа, разрешающие $C_0$-полупотоки операторов, разрешающие (полу)группы операторов, относительно спектральные проекторы, многоточечное начально-конечное условие, неавтономная модель Чена – Гетина, стохастическая модель Девиса, макромодель транспортного потока на перекрестке.

УДК: 517.9

MSC: 35K70, 60H30

Поступила в редакцию: 03.12.2021

DOI: 10.14529/mmp220104



© МИАН, 2024