Аннотация:
Статья содержит обзор результатов авторов в области неклассических моделей математической физики, для которых рассмотрены многоточечные начально-конечные условия, обобщающие условия Коши и Шоуолтера – Сидорова. Напомним, что неклассическими называют те модели математической физики, чьи представления в виде уравнений или систем уравнений в частных производных не укладываются в рамках одного из классических типов – эллиптического, параболического или гиперболического.
Абстрактные результаты проиллюстрированы конкретными многоточечными начально-конечными задачами в различных постановках для уравнений в частных производных, возникающих в последнее время в приложениях. В том числе рассмотрены неавтономная модель Чена – Гетина с комплексными коэффициентами, стохастическая эволюционная модель Девиса, макромодель транспортного потока на перекрестке, основанная на уравнениях Осколкова, рассмотренных в системе геометрических графов, учитывающих условие непрерывности, баланса потока и условие запрета на движение.
Ключевые слова:уравнения соболевского типа, разрешающие $C_0$-полупотоки операторов, разрешающие (полу)группы операторов, относительно спектральные проекторы, многоточечное начально-конечное условие, неавтономная модель Чена – Гетина, стохастическая модель Девиса, макромодель транспортного потока на перекрестке.