RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование» // Архив

Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2022, том 15, выпуск 3, страницы 111–126 (Mi vyuru653)

Программирование

Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination

[Динамическая байесовская сеть и скрытая марковская модель прогнозирования данных IoT для модели машинного обучения с использованием расширенного рекурсивного исключения признаков]

S. Noeiaghdamab, S. Balamuralitharanc, V. Govindand

a Irkutsk National Research Technical University, Irkutsk, Russian Federation
b South Ural State University, Chelyabinsk, Russian Federation
c Bharath Institute of Higher Education and Research, Chennai, India
d DMI St John the Baptist University Central, Mangochi, Malawi

Аннотация: В рамках исследовательской работы разработано слияние данных с учетом контекста с моделью машинного обучения на основе ансамбля (CDF-EMLM) для улучшения обработки данных о здоровье. Эта исследовательская работа сосредоточена на разработке улучшенного слияния данных с учетом контекста и алгоритма эффективного выбора признаков для улучшения процесса классификации для прогнозирования данных здравоохранения. Первоначально данные с устройств интернета вещей (IoT) собираются и предварительно обрабатываются, чтобы сделать их понятными для обработки слияния. В этой работе построен метод двойной фильтрации для предварительной обработки данных, который пытается пометить немаркированные атрибуты в собранных данных, чтобы можно было точно выполнить объединение данных. Кроме того, динамическая байесовская сеть (DBN) является хорошим компромиссом для манипулирования и становится инструментом для операций CADF. Здесь проблема вывода решается с использованием скрытой марковской модели (HMM) в модели DBN. После этого анализ основных компонентов (PCA) используется для извлечения признаков, а также для уменьшения размеров. Выбор признаков выполняется с использованием метода расширенного рекурсивного исключения признаков (ERFE) для устранения нерелевантных данных в наборе данных. Наконец, эти данные изучаются с использованием модели машинного обучения на основе ансамбля (EMLM) для проверки производительности слияния данных.

Ключевые слова: динамическая байесовская сеть, скрытая марковская модель, IoT данные здравоохранения, машинное обучение, анализ главных компонентов, расширенное рекурсивное устранение признаков.

УДК: 519.217

MSC: 60J05, 60J10, 90B30, 91D10, 65C40

Поступила в редакцию: 25.02.2022

Язык публикации: английский

DOI: 10.14529/mmp220308



© МИАН, 2024