Аннотация:
Статья посвящена исследованию свойств систем дифференциальных уравнений, содержащих большое (в частности, линейное) запаздывание. Системы с линейным запаздыванием имеют достаточно широкое применение в биологии, в частности, при моделировании распределения клеток в ткани организма; а также в теории нейронных сетей. Уравнения подобного типа встречаются также в задачах физики и механики, где важным моментом является асимптотическое поведение решения (в частности, асимптотическая устойчивость). При неустойчивости таких систем возникает задача стабилизации. Оптимальный алгоритм стабилизации основан на совокупности стабилизации систем обыкновенных дифференциальных уравнений и в дальнейшем разностных систем. Данный алгоритм достаточно просто реализуется с использованием численных методов решения систем дифференциальных уравнений с запаздыванием и решения матричных уравнений. Авторами составлена программа, позволяющая достаточно эффективно находить управляющее воздействие, осуществляющее стабилизацию некоторых систем.