Аннотация:
Теория обратных задач используется, чтобы восстановить коэффициент теплопередачи в задачах теплопроводности, используя замеры температуры на границе. Численное решение основано на методе конечных элементов по пространственным переменным, методе конечных разностей по времени и специальной итерационной схемы для определения коэффициента теплопередачи на каждом временном слое. Коэффициент теплопередачи ищется в виде конечного отрезка ряда с неизвестными коэффициентами Фурье, зависящими от времени. Алгоритм решения опирается на теоретические результаты, утверждающие, что задача корректна и сводится к операторному уравнению со сжимающим оператором. Результаты численных экспериментов подтверждают, что задача действительно корректна. Полученные результаты показывают точность, эффективность и надежность предложенного алгоритма. Они устойчивы к случайным возмущениям.