Аннотация:
Статья представляет собой краткий обзор результатов аналитических исследований классов задач для уравнений соболевского типа, полученных научным коллективом в Южно-Уральском государственном университете. В обзор включен ряд результатов по следующем направлениям: исследование разрешимости начальных задач для линейных, полилинейных уравнений соболевского типа и получение условий их устойчивости; исследование разрешимости классов задач для уравнений соболевского типа высокого порядка; исследование разрешимости и единственности начально-конечных задач и задач оптимального управления для уравнений соболевского типа; создание и развитие теории стохастических уравнений соболевского типа; исследование разрешимости задач для уравнений соболевского типа в пространстве К-форм. Получение всех этих результатов базируется на успешном использовании метода фазового пространства и теории вырожденных разрешающих (полу)групп, разработанными профессором Г.А. Свиридюком и развиваемыми его учениками, работающими в университетах нашей страны. Уравнения соболевского типа лежат в основе различных физических, биологических, экономических и других моделей. Краткое изложение совокупности результатов крупного направления современных исследований позволит получить не только актуальное системное представление о нем, но и о дальнейшем его развитии. Статья содержит пять разделов, в библиографию обзора вошли как работы, ставшие базисными для многих последующих результатов, прежде всего численных исследований, так и работы последних лет, которые расширили границы методов теории уравнений соболевского типа.
Ключевые слова:уравнения соболевского типа, метод фазового пространства Г.А. Свиридюка, вырожденные разрешающие (полу)группы, условие Шоуолтера – Сидорова, начально-конечные условия, оптимальное управление.