Аннотация:
Рассматривается задача о восстановлении априори неизвестных распределенных управлений в гиперболических динамических системах по результатам приближенных измерений состояний (скоростей) наблюдаемого движения системы. Задача решается в динамическом варианте, когда для определения текущего приближения неизвестного управления разрешено использовать только поступившие в данный момент приближенные измерения, реконструкция управления должна осуществляться в динамике (по ходу процесса, по ходу движения системы). Рассматриваемая задача некорректна. Для решения задачи предлагается воспользоваться методом динамической регуляризации, разработанным Ю. С. Осиповым и его школой. Построены новые модификации динамических регуляризующих алгоритмов решения задачи, которые в отличие от традиционных алгоритмов позволяют получить усиленную сходимость регуляризованных приближений, в частности получить кусочно-равномерную сходимость. Выполнена конечномерная аппроксимация задачи. Приводятся результаты численного моделирования, которые позволяют судить о способности модифицированных алгоритмов восстанавливать тонкую структуру искомых управлений.
Ключевые слова:динамическая система, управление, реконструкция, метод динамической регуляризации, кусочно-равномерная сходимость.