Аннотация:
В работе изучается краевая задача В. Н. Врагова для уравнения смешанного типа второго порядка, когда уравнение принадлежит эллиптическому типу вблизи оснований цилиндрической области. С помощью стационарного метода Галеркина доказана однозначная регулярная разрешимость краевой задачи при определенных условиях на коэффициенты и правую часть уравнения. При этом установлены априорные оценки для уравнения смешанного типа, которым удовлетворяют приближенные решения. Получена оценка скорости сходимости стационарного метода Галеркина в норме пространства Соболева $W^{1}_{2}$, через собственные функции оператора Лапласа по пространственным переменным и по времени. При выводе оценки скорости сходимости метода Галеркина существенно используется разложение решения исходной краевой задачи в ряд Фурье по собственным функциям оператора Лапласа и известное равенство Парсеваля.
Ключевые слова:уравнение смешанного типа, стационарный метод Галеркина, краевая задача, неравенство, оценка.