Аннотация:
Теория уравнений соболевского типа переживает эпоху своего расцвета. Большое число исследований посвящено детерминированным уравнениям и системам. Однако в натурных экспериментах возникают математические модели, содержащие случайные возмущения, например, в виде белого шума. Поэтому в последнее время все чаще появляются исследования, посвященные стохастическим дифференциальным уравнениям. В данной работе в рамках теории уравнений соболевского типа рассмотрена математическая модель Буссинеска–Лява с аддитивным белым шумом. При изучении модели полезными оказались методы и результаты теории уравнений соболевского типа с относительно $p$-ограниченными операторами. Поскольку модель представлена вырожденным уравнением математической физики, то к ней трудно применимы существующие ныне подходы Ито–Стратоновича–Скорохода. Мы используем уже хорошо зарекомендовавший себя при решении уравнений соболевского типа метод фазового пространства, заключающийся в редукции сингулярного уравнения к регулярному, определенному на некотором подпространстве исходного пространства. В первой части статьи собраны основные факты теории $(L,p)$-ограниченных операторов. Во второй — рассмотрена задача Коши для стохастического линейного уравнения соболевского типа высокого порядка. В качестве примера приведена математическая модель Буссинеска–Лява.
Ключевые слова:уравнение соболевского типа, пропагаторы, белый шум, винеровский процесс.