Аннотация:
Приводятся описание и анализ параллельных алгоритмов решения начально-краевых задач для уравнений аномальной диффузии, содержащих производные дробного порядка типа Римана-Лиувилля по пространственным и/или временной переменным. Параллельные алгоритмы построены на основе двухсеточного подхода. При этом грубая сетка используется для расчета эффектов пространственного и временного дальнодействия с использованием сплайн-аппроксимации, а мелкая сетка служит для конечно-разностной дискретизации решаемых уравнений. Рассматриваются алгоритмы с декомпозицией как по пространству, так и по времени. Для распараллеливания по времени используется подход, предложенный в известном алгоритме PARAREAL.
Приводятся теоретические оценки параллельной эффективности предложенных алгоритмов. Показано, что алгоритмы имеют сверхлинейное ускорение по сравнению с классическим последовательным конечно-разностным алгоритмом и обеспечивают тот же порядок точности вычислений при условии согласованного выбора шагов точной и грубой сеток. Также приводятся некоторые результаты вычислительных экспериментов, подтверждающие эффективность предложенных алгоритмов.