Аннотация:
Рассматривается анализ устойчивости положения равновесия при интервальных исходных данных. Доказано, что в случае мультипликативной неопределенности прямой и двойственный вектор Фробениуса определяются из точечной модели Неймана с матрицами центров интервалов. В случае интервальной неопределенности интервал
для числа Фробениуса можно определить через нахождение положения равновесия для двух точечных моделей Неймана с матрицами, состоящими из верхних и нижних границ интервалов. Также в работе вводятся понятия слабого и сильного решений, которые используются для получения робастных оценок положения равновесия для
интервальной модели Неймана.
Ключевые слова:продуктовая стратегия, линейное программирование, модель Неймана, интервальный анализ, теория игр, билинейные системы, программное обеспечение.