RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Вычислительная математика и информатика» // Архив

Вестн. ЮУрГУ. Сер. Выч. матем. информ., 2019, том 8, выпуск 3, страницы 43–57 (Mi vyurv217)

Обзор подходов и практических областей применения распознавания видов физической активности человека

Е. С. Тарантова, К. В. Макаров, А. А. Орлов

Муромский институт (филиал) ФГБОУ ВО «Владимирский государственный университет имени А.Г. и Н.Г. Столетовых» (602264 Муром, ул. Орловская, д. 2)

Аннотация: Распознавание видов физической активности человека является одним из актуальных направлений исследования в области машинного обучения, так как результаты распознавания необходимы при решении многих практических задач. В статье приводится обзор подходов и практических областей применения методов распознавания видов физической активности человека. Рассматриваются датчики, используемые для распознавания видов физической активности человека, и представлены критерии их выбора. Представлены возможные пути решения проблемы выбора места размещения и ориентации носимых датчиков. В статье рассматриваются основные этапы распознавания видов физической активности человека. Представлены извлекаемые признаки и методы их отбора для повышения точности классификации видов физической активности человека и снижения вычислительных затрат за счет уменьшения числа признаков. Сформулированы достоинства и недостатки популярных методов классификации. Рассматриваются метрики, используемые для оценки качества обучения модели классификации. Наиболее применяемой метрикой качества является кривая ошибок. Также представлены практические задачи, в которых необходимы результаты распознавания видов физической активности человека. Основными областями применения метода распознавания являются медицина, производство, фитнес и безопасность людей. В заключении представлены возможные направления будущих исследований.

Ключевые слова: распознавание образов, машинное обучение, виды физической активности человека.

УДК: 004.93'1

Поступила в редакцию: 21.01.2019

DOI: 10.14529/cmse190303



Реферативные базы данных:


© МИАН, 2024