Аннотация:
В настоящее время большие временные ряды используются в широком спектре предметных областей. Современные системы управления базами данных временных рядов (СУБД-ВР) предлагают, однако, скромный набор встроенных инструментов и средств для интеллектуального анализа данных. Использование сторонних систем интеллектуального анализа временных рядов приводит в связи с этим к нежелательным накладным расходам на экспорт данных вне СУБД-ВР, преобразование данных и импорт результатов анализа. В то же время актуальной научной задачей является внедрение методов интеллектуального анализа данных в реляционные СУБД (РСУБД), которые доминируют на рынке средств управления данными. Однако пока отсутствуют разработки по внедрению методов интеллектуального анализа временных рядов в РСУБД. В статье предлагается подход к управлению и интеллектуальному анализу временных рядов внутри РСУБД на основе концепции матричного профиля. Матричный профиль представляет собой структуру данных, которая для каждой подпоследовательности временного ряда сохраняет индекс и расстояние до ее ближайшего соседа (подпоследовательности ряда, наиболее похожей на данную). Матричный профиль служит основой для обнаружения лейтмотивов (шаблонов), аномалий и других примитивов интеллектуального анализа временных рядов. Описанный подход реализован в РСУБД PostgreSQL. Представлены результаты вычислительных экспериментов, показавшие более высокую эффективность предложенного подхода по сравнению с СУБД-ВР InfluxDB и OpenTSDB.