Аннотация:
Получено простое доказательство недавнего результата Е. Г. Емельянова (РЖМат, 1997, 7Б200) о максимуме конформного радиуса $r(D,1)$ в семействе односвязных областей с фиксированным значением $r(D,0)$. Решена аналогичная задача в семействе выпуклых областей. Найдены точные оценки для функционалов вида $|g'(w)|/|g(w)|^{\delta}$ в семействах функций, обратных элементам классов $S$ и $S_M$, где $S=\{f:f\text{ регулярна и однолистна в }\{z :|z|<1\},\ f(0)=f'(0)-1=0\}$,
$S_M=\{f\in S:|f(z)|<M\text{ при }|z|<1\}$. Библ. – 7 назв.