RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2001, том 276, страницы 312–333 (Mi znsl1424)

Эта публикация цитируется в 1 статье

Числа классов неопределенных бинарных квадратичных форм

О. М. Фоменко

Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН

Аннотация: Пусть $h(d)$ – число классов собственно эквивалентных примитивных бинарных квадратичных форм $ax^2+bxy+cy^2$ дискриминанта $d=b^2-4ac$. Рассматривается случай неопределенных форм $(d>0)$.
В предположении справедливости расширенной гипотезы Римана для некоторых полей алгебраических чисел доказаны следующие результаты.
1) Пусть $\alpha(x)$ – сколь угодно медленно монотонно возрастающая функция с условием $\alpha(x)\to\infty$. Тогда
$$ \#\left\{p\le x\big|\left(\frac 5p\right)=1,\,h(5p^2)>(\log p)^{\alpha(p)}\right\}=o(\pi(x)), $$
где $\pi(x)=\#\{p\le x\}$.
2) Пусть $F$ – произвольная достаточно большая положительная константа. Тогда для любого достаточно большого $x>x_F$ справедливо соотношение
$$ \#\left\{p\le x\big|\left(\frac5p\right)=1,\,h(5p^2)>F\right\}\asymp\frac{\pi(x)}F. $$

3)
$$ \#\left\{p\le x\big|\left(\frac 5p\right)=1,\,h(5p^2)=2 \right\}\sim\frac9{19}\,A\pi(x), $$
где $A$ – константа Артина.
Тем самым, для большинства дискриминантов вида $d=5p^2$, $\left(\frac5p\right)=1$, числа классов малы. Это согласуется с предположением Гаусса о малости $h(d)$ для большинства дискриминантов $d>0$ в общем случае. Библ. – 22 назв.

УДК: 511.466+517.863

Поступило: 26.03.2001


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2003, 118:1, 4918–4932

Реферативные базы данных:


© МИАН, 2024