RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2008, том 353, страницы 14–26 (Mi znsl1627)

Эта публикация цитируется в 1 статье

A direct proof of Gromov's theorem

[Прямое доказательство теоремы Громова]

Yu. D. Buragoa, S. G. Malevb, D. I. Novikovb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Faculty of Mathematics and Computer Science, Weizmann Institute of Science

Аннотация: Дано новое доказательство известной теоремы M. Громова: для любых $C>0$ и целого $n>1$ существует функция $\Delta_{C,n}(\delta)$ такая, что если расстояние в метрике Громова–Хаусдорфа между полными римановыми $n$-многообразиями $V$ и $W$ не превышает $\delta$, их секционные кривизны $|K_\sigma|$ не превосходят $C$, а радиусы инъективности не меньше $1/C$, то липшицево расстояние между $V$ и $W$ не превосходит $\Delta_{C,n}(\delta)$, причем $\Delta_{C,n}(\delta)\to0$ при $\delta\to0$. Библ. – 6 назв.

УДК: 514.7

Поступило: 20.07.2007

Язык публикации: английский


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2009, 161:3, 361–367

Реферативные базы данных:


© МИАН, 2024