RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2006, том 336, страницы 153–198 (Mi znsl201)

Эта публикация цитируется в 3 статьях

Краевые задачи для бигармонического уравнения и итерированного лапласиана в трехмерной области с ребром

С. А. Назаровa, Г. Х. Свирсb

a Институт проблем машиноведения РАН
b Delft University of Technology

Аннотация: Для областей $\Omega$ с кусочно гладкими границами обобщенное решение $u\in W^2_2(\Omega)$ уравнения $\Delta_x^2u=f$ с краевыми условиями $u=\Delta_xu=0$ не всегда может быть получено при последовательном решении двух задач Дирихле для уравнения Пуассона, к которым указанная краевая задача приводится простой подстановкой. В двумерном случае этот факт известен как парадокс Сапонджяна в теории свободно опертых многоугольных пластин. В статье изучена трехмерная задача в области с гладким ребром $\Gamma$. Если переменный раствор угла $\alpha\in C^\infty(\Gamma)$ всюду на ребре меньше $\pi$, то краевая задача для бигармонического уравнения эквивалентна итерированной задаче Дирихле, а ее решение $u$ наследует от решений этих задач свойство положительности. При $\alpha\in(\pi,2\pi)$ процедуру решения двух задач Дирихле приходится модифицировать, допуская у операторов задач бесконечномерные ядро и коядро, и находить решение $u\in W^2_2(\Omega)$ по обращению некоторого интегрального оператора на контуре $\Gamma$. Если $\alpha(s)\in(3\pi/2,2\pi)$ для какой-либо точки $s\in\Gamma$, то существует неотрицательная функция $f\in L_2(\Omega)$, при которой решение $u$ меняет знак внутри области $\Omega$. Случай трещины ($\alpha=2\pi$ всюду на $\Gamma$) требует введения специальной шкалы весовых функциональных пространств и также сопровождается потерей решением $u$ свойства положительности. В нескольких геометрических ситуациях вопросы о корректной постановке краевой задачи для бигармонического уравнения и положительности ее обобщенного решения остались открытыми. Библ. – 46 назв.

УДК: 517.946

Поступило: 30.01.2005


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2007, 143:2, 2936–2960

Реферативные базы данных:


© МИАН, 2024