Эта публикация цитируется в
1 статье
Instability, complexity, and evolution
[Неустойчивость, сложность и эволюция]
S. Vakulenkoab,
D. Grigorievc a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
b North Western Institute of Printing, St. Petersburg State University of Technology and Design
c Université de Lille
Аннотация:
В этой статье мы рассматриваем новый класс случайных динамических систем, который содержит, в частности, нейронные сети. Для этих систем мы рассматриваем проблему “выживаемости”: мы предполагаем, что система выживает, только если ее состояние находится в предписанной области
$\Pi$ фазового пространства. Подход, развитый здесь, основан на фундаментальных идеях А. Колмогорова, Р. Тома, М. Громова, Л. Валианта, Л. Ван Валена и других.
При некоторых условиях можно показать, что почти все системы из нашего класса неустойчивы в следующем смысле: вероятность
$P(T)$ покинуть область
$\Pi$ в течение промежутка времени
$[0,T]$ стремится к 1 при
$T$, стремящемся к бесконечности. Однако если параметры системы могут меняться со временем (эволюционный случай), тогда возможно, что вероятность
$P(T)$ может быть меньше 1 для всех времен. Далее мы изучаем свойства такой устойчивой эволюции, предполагая, что параметры системы кодированы некоторым дискретным кодом. Это позволяет нам применить теорию сложности, алгоритмы и т.д. Эволюция есть марковский процесс изменения кода. Мы показываем, что при некоторых условиях эволюция неустойчивых систем обладает следующим свойством: относительная сложность Колмогорова кода не может быть ограничена при всех временах
$T$. Для моделей типа нейронных сетей мы определяем сложность этих сетей. Мы показываем, что эта сложность также имеет тенденцию нарастать в течение устойчивой эволюции. Мы даем конкретные примеры такой эволюции. Библ. – 80 назв.
УДК:
517.958:57 Поступило: 02.12.2008
Язык публикации: английский