RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2005, том 327, страницы 5–16 (Mi znsl320)

Эта публикация цитируется в 1 статье

Вариант теоремы Гротендика для подпространств аналитических функций в решетках

Д. С. Анисимов

Санкт-Петербургский государственный университет

Аннотация: Один из вариантов неравенства Гротендика гласит, что любой ограниченный линейный оператор, действующий из банаховой решетки $X$ в банахову решетку $Y$, действует также из $X(l^2)$ в $Y(l^2)$. Показано, что нечто подобное верно для подпространств типа Харди. А именно, пусть $X$ – банахова решетка измеримых функций на окружности, и пусть оператор действует из соответствующего подпространства аналитических функций $X_A$ в решетку $Y$ или в фактор-пространство $Y/Y_A$. При некоторых условиях на решетки установлено, что он индуцирует оператор, действующий соотвественно из $X_A(\ell^2)$ в $Y(\ell^2)$ или $Y/Y_A(\ell^2)$. Библ. – 7 назв.

УДК: 517.5

Поступило: 20.05.2005


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2006, 139:2, 6363–6368

Реферативные базы данных:


© МИАН, 2024