Аннотация:
Пусть $F\in\mathbb C[X,Y]^2$ этальное отображение степени $\operatorname{deg}F=d$. Этальное отображение $G\in\mathbb C[X,Y]^2$ называется $d$-аппроксимационно обратным к $F$, если $\operatorname{deg}G\le d$ и $F\circ G=(X+A(X,Y),Y+B(X,Y))$ и $G\circ F=(X+C(X,Y),Y+D(X,Y))$, где порядки четырех полиномов $A,B,C$ и $D$ больше чем $d$. Хорошо известно, что каждый $\mathbb C^2$ автоморфизм $F$ степени $d$ имеет $d$-аппроксимационно обратный, а именно $F^{-1}$. В этой статье мы доказываем, что если $F$ контрпример степени $d$ к 2-мерной гипотезе о якобиане, то $F$ не имеет $d$-аппроксимационно обратного. Также приводятся выводы из этого результата. Библ. – 18 назв.