Аннотация:
Метод С. А. Виноградова приспособлен к тому, чтобы доказать для некоторых ортогональных продакт-систем аналог его неравенства для тригонометрической системы. Для системы Уолша $W=\{w_n\}$, например, верно следующее. Пусть $U(W)$ – пространство функций с равномерно сходящимся рядом Фурье–Уолша. Тогда для каждого функционала $F$ на $U(W)$ справедливо неравенство
$$
\operatorname{mes}\Bigl\{\sup_N\Bigl|\sum_{n\le2N}F(w_n)w_n\Bigr|>\lambda\Bigr\}\le\mathrm{const}\,\lambda^{-1}\|F\|_{U(W)^*}.
$$
Библ. – 25 назв.