Аннотация:
Рассматривается самосопряженный оператор $H$, для которого имеется унитарная группа $U_\tau$ такая, что оператор $H^\tau\equiv U_\tau HU_\tau^{-1}$ аналитичен по $\tau$. При некоторых дополнительных ограничениях на $H$ мы доказываем отсутствие сингулярного непрерывного спектра у $H$. При этом мы допускаем такое поведение существенного спектра $H^\tau$ при $\operatorname{Im}\tau\ne0$, которое исключает применение метода аналитических растяжений. В нашем анализе существенную роль играют аналогии с методами обратной задачи рассеяния.