RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ЛОМИ, 1983, том 127, страницы 181–200 (Mi znsl4220)

Эта публикация цитируется в 2 статьях

Нелинейные и квазилинейные эволюционные уравнения: существование, единственность и сравнение решений; скорость сходимости разностного метода

М. И. Хазан


Аннотация: В банаховом пространстве изучается задача Коши
$$ \frac{du(t)}{dt}=A(t, [u](t))u(t)+f(t),\quad0\leqslant t\leqslant T,\quad u(0)=u_0, $$
где $[u](t)=u|_{[0, t]}$, $f\in L_1(0, T; X)$; при фиксированных $t$, $w$ нелинейный оператор $A(t, w)=A$ являетоя псевдопроизводящим операторов полугруппы $e^{sA}$ $(s\geqslant0)$, причем $\|e^{sA}u-e^{sA}v\|\leqslant e^{\omega(r, a)^s}\|u-v\|$ при $u, v, w(r)\in Z_r$ ($Z_r$ – шар в $Z\subset X$), $\|Aw(\tau)\|\leqslant a$; условия на зависимость $A(t, w)$ от $w$ допускают вхождение $w$ в “старшие” члены. Доказаны локальные и глобальные теоремы существования и единственности предельно-разностного решения задачи Коши, изучена его дифференцируемость и зависимость от $u_0$ и $f$. Аналогичные результаты Крэндалла–Пэзи, Бенилана, Крэндалла–Эванса, Эванса, Охару, Павела и др. для уравнений $\frac{du(t)}{dt}=A(t)u(t)+f(t)$ с $\omega$-диссипативными операторами являются частными случаями наших. В квазилинейном случае наши результаты дополняют и обобщают известную теорему Т. Като. Кроме того, получены оценки скорости сходимости разностного метода и оценки нормы разности решений задач Коши с различными операторами $A(t, w)$; эти результат новы и для уравнений с диссипативными операторами.

УДК: 518:517.986.7/517.944



Реферативные базы данных:


© МИАН, 2024